Determining the Chiral Index of Semiconducting Carbon Nanotubes Using Photoconductivity Resonances
نویسندگان
چکیده
We utilize photoconductivity spectroscopy to identify the unique chiral structure of individual carbon nanotubes (CNTs). Peaks in photoconductivity are measured throughout the visible and near-IR wavelength ranges. Photoconductivity peaks associated with individual CNTs are referenced against existing Rayleigh scattering measurements to uniquely identify chiral indices. We find close agreement between our assigned exciton resonances and the previously published exciton resonances. The typical net energy mismatch is ≤20 meV. By enabling chiral identification of CNTs after the completion of device fabrication, the technique offers a facile method for investigating relationships between CNT structure and electronic/optoelectronic properties.
منابع مشابه
Infrared spectra of individual semiconducting single-walled carbon nanotubes: Testing the scaling of transition energies for large diameter nanotubes
We have measured the low-energy excitonic transitions of chiral assigned individual large-diameter semiconducting single-walled nanotubes using a high-resolution Fourier transform photoconductivity technique. When photoconductivity is complemented by Rayleigh scattering spectroscopy, as many as five optical transitions can be identified on the same individual nanotube over an energy range of 0....
متن کاملPhotoconductivity spectra of single-carbon nanotubes: implications on the nature of their excited States.
We have measured the photoconductivity excitation spectra of individual semiconducting carbon nanotubes incorporated as the channel of field-effect transistors. In addition to the pronounced resonance that correlates with the second van Hove transition (E(22)) in semiconducting carbon nanotubes, a weaker sideband at about 200 meV higher energy is observed. Electronic structure calculations that...
متن کاملIntersubband decay of 1-D exciton resonances in carbon nanotubes.
We have studied intersubband decay of E22 excitons in semiconducting carbon nanotubes experimentally and theoretically. Photoluminescence excitation line widths of semiconducting nanotubes with chiral indicess (n,m) can be mapped onto a connectivity grid with curves of constant (n - m) and (2n + m). Moreover, the global behavior of E22 line widths is best characterized by a strong increase with...
متن کاملReentrant semiconducting behavior of zigzag carbon nanotubes at substitutional doping by oxygen dimers.
The electronic structures of carbon nanotubes doped with oxygen dimers are studied using the ab initio pseudopotential density functional method. The fundamental energy gap of zigzag semiconducting nanotubes exhibits a strong dependence on both the concentration and configuration of oxygen-dimer defects that substitute for carbon atoms in the tubes and on the tube chiral index. For a certain ty...
متن کاملUltrafast photoconductivity of graphene nanoribbons and carbon nanotubes.
We present a comparative study of the ultrafast photoconductivity in two different forms of one-dimensional (1D) quantum-confined graphene nanostructures: structurally well-defined semiconducting graphene nanoribbons (GNRs) fabricated by a "bottom-up" chemical synthesis approach and semiconducting carbon nanotubes (CNTs) with a similar bandgap energy. Transient photoconductivities of both mater...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014